2,847 research outputs found

    Genetic Analysis of the Functions and Interactions of Components of the LevQRST Signal Transduction Complex of Streptococcus mutans

    Get PDF
    Transcription of the genes for a fructan hydrolase (fruA) and a fructose/mannose sugar:phosphotransferase permease (levDEFG) in Streptococcus mutans is activated by a four-component regulatory system consisting of a histidine kinase (LevS), a response regulator (LevR) and two carbohydrate-binding proteins (LevQT). The expression of the fruA and levD operons was at baseline in a levQ mutant and substantially decreased in a levT null mutant, with lower expression with the cognate inducers fructose or mannose, but slightly higher expression in glucose or galactose. A strain expressing levQ with two point mutations (E170A/F292S) did not require inducers to activate gene expression and displayed altered levD expression when growing on various carbohydrates, including cellobiose. Linker-scanning (LS) mutagenesis was used to generate three libraries of mutants of levQ, levS and levT that displayed various levels of altered substrate specificity and of fruA/levD gene expression. The data support that LevQ and LevT are intimately involved in the sensing of carbohydrate signals, and that LevQ appears to be required for the integrity of the signal transduction complex, apparently by interacting with the sensor kinase LevS

    Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor

    Full text link
    Most holographic models of superconducting systems neglect the effects of dynamical boundary gauge fields during the process of spontaneous symmetry-breaking. Usually a global symmetry gets broken. This yields a superfluid, which then is gauged "weakly" afterwards. In this work we build (and probe the dynamics of) a holographic model in which a local boundary symmetry is spontaneously broken instead. We compute two-point functions of dynamical non-Abelian gauge fields in the normal and in the broken phase, and find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave superconductor in (1+1) dimensions. The ground state of this model also breaks (1+1)-dimensional parity spontaneously, while the Hamiltonian is parity-invariant. We discuss possible implications of our results for a wider class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added (section 3.1), improved presentation, version accepted by JHEP; v2: paragraph added to discussion, figure added, references added, typos correcte

    Contribution of genetic effects to genetic variance components with epistasis and linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cockerham genetic models are commonly used in quantitative trait loci (QTL) analysis with a special feature of partitioning genotypic variances into various genetic variance components, while the F<sub>∞ </sub>genetic models are widely used in genetic association studies. Over years, there have been some confusion about the relationship between these two type of models. A link between the additive, dominance and epistatic effects in an F<sub>∞ </sub>model and the additive, dominance and epistatic variance components in a Cockerham model has not been well established, especially when there are multiple QTL in presence of epistasis and linkage disequilibrium (LD).</p> <p>Results</p> <p>In this paper, we further explore the differences and links between the F<sub>∞ </sub>and Cockerham models. First, we show that the Cockerham type models are allelic based models with a special modification to correct a confounding problem. Several important moment functions, which are useful for partition of variance components in Cockerham models, are also derived. Next, we discuss properties of the F<sub>∞ </sub>models in partition of genotypic variances. Its difference from that of the Cockerham models is addressed. Finally, for a two-locus biallelic QTL model with epistasis and LD between the loci, we present detailed formulas for calculation of the genetic variance components in terms of the additive, dominant and epistatic effects in an F<sub>∞ </sub>model. A new way of linking the Cockerham and F<sub>∞ </sub>model parameters through their coding variables of genotypes is also proposed, which is especially useful when reduced F<sub>∞ </sub>models are applied.</p> <p>Conclusion</p> <p>The Cockerham type models are allele-based models with a focus on partition of genotypic variances into various genetic variance components, which are contributed by allelic effects and their interactions. By contrast, the F<sub>∞ </sub>regression models are genotype-based models focusing on modeling and testing of within-locus genotypic effects and locus-by-locus genotypic interactions. When there is no need to distinguish the paternal and maternal allelic effects, these two types of models are transferable. Transformation between an F<sub>∞ </sub>model's parameters and its corresponding Cockerham model's parameters can be established through a relationship between their coding variables of genotypes. Genetic variance components in terms of the additive, dominance and epistatic genetic effects in an F<sub>∞ </sub>model can then be calculated by translating formulas derived for the Cockerham models.</p

    How To Perform Meaningful Estimates of Genetic Effects

    Get PDF
    Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map

    Mapping quantitative trait loci in line cross with repeat records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenotypes with repeat records from one individual or multiple individuals were often encountered in practices of mapping QTL in linecross. The current genetic mapping method for a trait with repeat records is adopted by simply replacing the phenotype by the average value of the repeat records. This simple treatment has not sufficiently utilized the information from the replication and ignored the impacts of the permanent environmental effects on the accuracy of the estimated QTL.</p> <p>Results</p> <p>We propose to map QTL by using the repeatability model to directly analyze the repeat records rather than simply analyze the mean phenotype, improving the efficiency of QTL detecting because of adequately utilizing the information from data and allowing for the permanent environmental effects. A maximum likelihood method implemented via the expectation-maximization (EM) algorithm is applied to perform the parameter estimation of the repeatability model. The superiority of the mapping method based on the repeatability model over simple analysis using the mean phenotype was demonstrated by a series of simulations.</p> <p>Conclusion</p> <p>Our results suggest that the proposed method can serve as a powerful alternative to existing methods. By mean of the repeatability model, utilizing the repeat records on individual may improve the efficiency of QTL detecting in line cross.</p

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Multi-locus Test Conditional on Confirmed Effects Leads to Increased Power in Genome-wide Association Studies

    Get PDF
    Complex diseases or phenotypes may involve multiple genetic variants and interactions between genetic, environmental and other factors. Current genome-wide association studies (GWAS) mostly used single-locus analysis and had identified genetic effects with multiple confirmations. Such confirmed single-nucleotide polymorphism (SNP) effects were likely to be true genetic effects and ignoring this information in testing new effects of the same phenotype results in decreased statistical power due to increased residual variance that has a component of the omitted effects. In this study, a multi-locus association test (MLT) was proposed for GWAS analysis conditional on SNPs with confirmed effects to improve statistical power. Analytical formulae for statistical power were derived and were verified by simulation for MLT accounting for confirmed SNPs and for single-locus test (SLT) without accounting for confirmed SNPs. Statistical power of the two methods was compared by case studies with simulated and the Framingham Heart Study (FHS) GWAS data. Results showed that the MLT method had increased statistical power over SLT. In the GWAS case study on four cholesterol phenotypes and serum metabolites, the MLT method improved statistical power by 5% to 38% depending on the number and effect sizes of the conditional SNPs. For the analysis of HDL cholesterol (HDL-C) and total cholesterol (TC) of the FHS data, the MLT method conditional on confirmed SNPs from GWAS catalog and NCBI had considerably more significant results than SLT

    Functionally Orthologous Viral and Cellular MicroRNAs Studied by a Novel Dual-Fluorescent Reporter System

    Get PDF
    Recent research raised the possibility that some viral microRNAs (miRNAs) may function as orthologs of cellular miRNAs. In the present work, to study the functional orthologous relationships of viral and cellular miRNAs, we first constructed a dual-fluorescent protein reporter vector system for the easy determination of miRNA function. By expressing the miRNAs and the indicator and internal control fluorescent proteins individually from a single vector, this simple reporter system can be used for miRNA functional assays that include visualizing miRNA activity in live cells. Sequence alignments indicated that the simian virus 40 (SV40) encoded miRNA sv40-mir-S1-5p contains a seed region identical to that of the human miRNA hsa-miR423-5p. Using the new reporter system, it was found that sv40-mir-S1-5p and hsa-miR423-5p downregulate the expression of common artificial target mRNAs and some predicted biological targets of hsa-miR423-5p, demonstrating that they are functional orthologs. The human immunodeficiency virus 1 (HIV-1) encoded hiv1-miR-N367 also contains a seed sequence identical to that of the human miRNA hsa-miR192. Functional assays showed that hiv1-miR-N367 and hsa-miR192 could downregulate common artificial and predicted biological targets, suggesting that these miRNAs may also act as functional orthologs. Thus, this study presents a simple and universal system for testing miRNA function and identifies two new pairs of functional orthologs, sv40-mir-S1-5p and hsa-miR423-5p as well as hiv-1-miR-N367 and hsa-miR192. These findings also expand upon our current knowledge of functional homology and imply that a more general phenomenon of orthologous relationships exists between viral and cellular miRNAs

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Designing for human–agent collectives: display considerations

    Get PDF
    The adoption of unmanned systems is growing at a steady rate, with the promise of improved task effectiveness and decreased costs associated with an increasing multitude of operations. The added flexibility that could potentially enable a single operator to control multiple unmanned platforms is thus viewed as a potential game-changer in terms of both cost and effectiveness. The use of advanced technologies that facilitate the control of multiple systems must lie within control frameworks that allow the delegation of authority between the human and the machine(s). Agent-based systems have been used across different domains in order to offer support to human operators, either as a form of decision support offered to the human or to directly carry out behaviours that lead to the achievement of a defined goal. This paper discusses the need for adopting a human–agent interaction paradigm in order to facilitate an effective human–agent partnership. An example of this is discussed, in which a single human operator may supervise and control multiple unmanned platforms within an emergency response scenario
    corecore